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Wiener, Matthew C. and Barry J. Richmond. Using response action potentials elicited by a visual stimulus is an important
models to estimate channel capacity for neuronal classification @4rt of the code for carrying stimulus-related information.
stationary visual stimuli using temporal codirly.Neurophysiol82: - There js now strong evidence that modulation of the firing rate

2861-2875, 1999. Both spike count and temporal modulation ate . .
known to carry information about which of a set of stimuli elicited Ziurlng the course of the response to a stimulus presented for

response; but how much information temporal modulation adds &€ Period of a typical intersaccadic interval300 ms) carries
mains a subject of debate. This question usually is addressedagiditional information that is not available from average re-
examining the results of a particular experiment that depend on thgonse strength alone (Heller et al. 1995; Richmond and Op-
specific stimuli used. Developing a response model allows us to afkan 1987, 1990:; Tovee et al. 1993: Victor and Purpura 1996).
how much more information is carried by the best use of responsgyre we investigate how much information temporal modula-
strength and temporal modulation together (that is, the channel ﬁ(%'n adds.

)

pacity using a code incorporating both) than by the best use of spi . .
count alone (the channel capacity using the spike count code). Thi$S often understood, the answer to this question depends on

replaces dependence on a particular data set with dependence orfifReeXperiment from which we take our data. Different sets of
accuracy of the model. The model is constructed by finding statisticimuli will elicit different sets of responses, which may en-
rules obeyed by all the observed responses and assuming thatcade more or less information using temporal modulation.
sponses to stimuli not presented in our experiments obey the sag®ging response models can help us answer a question less tied
rules. We assume that all responses within the observed dynaigjc particular experiment: how much more information can be
range, even if not elicited by a stimulus in our experiment, could k& ried by the best use of temporal modulation than by the best

elicited by some stimulus. The model used here is based on princiagb of spike count alone? The maximum amount of informa-
component analysis and includes both response strength and a c . ) : :
(£10 ms) representation of temporal modulation. Temporal modu?g;ﬁathat can be carried by a neuron using a particular code

tion at finer time scales carries little information about the identity uch .as spike count, or Splke CQU”t alon'g with some repre-
stationary visual stimuli (although it may carry information aboug€ntation of temporal modulation) is called its channel capacity
stimulus motion or change), and we present evidence that, given(§over and Thomas 1991; Shannon and Weaver 1949). The
variability, it should not be expected to do so. The model makes ugBannel capacity is defined uniquely for a particular neuron
of a linear relation between the logarithms of mean and variance using a particular code. Channel capacity’s uniqgueness comes
responses, similar to the widely seen relation between mean atda price, however: to calculate channel capacity, we must

variance of spike count. Responses are modeled using truncaig@éw all possible responses that can be elicited from a neuron
Gaussian distributions. The amount of stimulus-related informatiQgther than only those observed in our experiment.

carried by spike count in our data are 0.35 and 0.31 bits in primaryour goal is to construct a response model that not only

visual and inferior temporal cortices, respectively, rising to 0.52 a . - -
0.37 bits for the two-principal-component code. The response modi€ scrlb(;ats the rd(-zlsi);)hnses observe(t:lhlntan e)l(gg”mﬁn.tt b(;itbalsct)hcan
estimates that the channel capacity is 1.1 and 1.4 bits, respectiv ,“S‘? 0 predict (ne responses that wou € elicited by other
using the spike count only, rising to 2.0 and 2.2 bits using twotMuli. This substitutes dependence on the accuracy of the

principal components. Thus using this representation of tempof@Pdel for the limitations imposed by the amount of data
modulation is nearly equivalent to adding a second independent dgpically collected in experiments. Ideally we would like this
using the spike count code. This is much more than estimated usingdel to include all features of the response that do carry
transmitted information but far less than would be expected if alinique information, without complicating matters by including
degrees of freedom provided by the individual spike times carrigdatures that carry little or no unique information. Recently
independent information. Gershon et al. (1998) presented an approach to constructing
such a response model involving spike count only. The model
used a widely known relation between mean and variance of
INTRODUCTION spike count (Dean 1981; Lee et al. 1998; O’Keefe et al. 1997,

It is not yet completely understood how information iirolhurst et al. 1981, 1983; van Kan et al. 1985; Vogels et al.

encoded in neuronal spike trains and how much information 3989 @nd the fact that distributions of spike count were well
carried. In the visual system, it is clear that the number ? by a truncated Gaussian. This model allowed Gershon et al.

998), given any mean spike count, to describe the set of

The costs of publication of this article were defrayed in part by the paymelh’“:t‘Sponses giving rise to that mean. The set of responses cor-

of page charges. The article must therefore be hereby maskhaftisemerit  responding to a given mean did not depend on whether the
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. =~ mean had actually been elicited by a stimulus in the experi-
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ment. Thus the model predicted the responses associated with A
any possible mean. Because any set of responses has a mean, E
the model described all sets of responses that could be elicited
from the neuron. This allowed Gershon et al. to estimate the
neuron’s channel capacity using the spike count code.

Here we extend the approach of Gershon et al. (1998) to a
code that includes the temporal patterns of rate modulation of
the responses. We represent the neuronal responses using the
first two principal components. The coefficient with respect to
the first principal component is strongly correlated with spike
count, and the coefficient with respect to the second principal
component is a coarse-(L0 ms) measure of the time course of
a response, often indicating whether spikes tend to be concen-
trated at the beginning of a response (Richmond and Optican
1987, 1990). We identify relations among the means and
variances of the principal component coefficients similar to the
relation between mean and variance of spike count. We also
find that distributions of the principal component coefficients
are well fit by truncated Gaussian distributions. Now a set of
responses must be described by two means—one for eachB
component of the code. As in Gershon et al. (1998), this allows
us to predict both the response strength and the temporal
patterns of rate modulation for all possible sets of responses. ﬁ
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We estimated channel capacity on the basis of the response
models for spike count and for the first two principal compo-
nents. We found that the two-component code on averageec. 1. Walsh patterns. For the primary visual cortex (V1) set 1, the 64
increases the channel capacity by 0.8—0.9 bits over that carrmséduli (A) and the corresponding contrast-reversed set were presented on the
by spike count alone (1.1 and 1.4 bits, respectively) in neurof8et e e e et were presented on the receptive field
in the primary visual cortex (Vl) a_nd _area TE of inferio hile the rﬁonkeygfixated. For both, the stimuli 5vere 2.5° on a side (cgvering
temporal cortex. Therefore the contribution temporal modulge excitatory receptive field and some of the surround). For the inferior
tion can make to neural information processing for identificaemporal cortex (IT), the & 4 set (16 stimuli) in thésottom left corneiof A
tion of stationary stimuli, although far smaller than if allend the corresponding contrast-reversed set were used as the monkey per-
degrees of freedom in a spike train actually were used to caf‘i’eg”ed 2 ”or:‘ma“?h'tof'??m‘?'e task. Stimuli were 4° on a side and were
such information, is substantially larger than would be esficered at the point of fixation.
mated from only the responses seen in our experiment. Thign the IT study (Eskandar et al. 1992), stimuli were presented
contrasts with situations in which rapidly changing stimufentered on the fovea. The patterns were 4° square. Thirty-two stimuli
drive precisely time-locked neuronal responses, which can 1e4g/€ used: sixteen & 4 pixel patterns and their contrast-reversed
to extremely high information transmission rates (Buracas &tunterparts.

f . . .~ The stimulus was displayed for 320 ms in V1 and 352 ms in IT. To
al. 1998). Finally, we present evidence that very little add.la'ccount for response latencies and to avoid contamination from off-

tional channel capacity for identifying stationary stimuli can bgsponses, spikes were counted during the interval from 30 to 300 ms
expected by using more principal components (that is, Byter stimulus onset for the V1 neurons and 50 to 350 ms after

i

representing the rate variation with higher precision). stimulus onset for the IT neurons. Gershon et al. (1998) found that
both transmitted information and channel capacity based on the spike

METHODS count code are stable with respect to small changes in these counting
windows. For each neuron, each stimulus was presented approxi-

Data sets mately the same number of timesZ) in randomized order. Different

) ) ) neurons received different numbers of presentations. The number of
We performed new analyses using previously published data. Th@sentations of each stimulus was between 10 and 50 in V1 and
data came from two studies of supragranular V1 complex cells, eagdtween 19 and 50 in IT. Seven V1 neurons wWithO trials per
study using two rhesus monkeys performing a simple fixation tagimulus were omitted from these analyses to ensure stability of
(Kjaer et al. 1997; Richmond et al. 1990), and from one study @iformation estimates (Golomb et al. 1997; Wiener and Richmond

neurons in IT cortex in two other monkeys performing a simpleggg). The timing of events, including spikes, was recorded with 1-ms
sequential nonmatch-to-sample task (Eskandar et al. 1992). In thgs|ution.

three studies, the visual stimuli were two-dimensional black-and-
white patterns based on the Walsh functions (Fig. 1). e

In both V1 studies, stimuli were presented centered on the neuro%ﬁ'am'fymg the responses
receptive fields, located in the lower contralateral visual field 1-3° Each spike train was low-pass filtered by convolution with a Gauss-
from the fovea. Stimuli covered the excitatory receptive field. At 3fan distribution with standard deviation of 5 ms and resampled at 1-ms
eccentricity, the stimuli were-2.5° on a side. In the first V1 study resolution to create a spike density function (Fig. 2,and B).
(V1 set 1) (Richmond et al. 1990), 128 stimuli were used: sixty-fouonvolving and resampling in this way avoids a problem of binned
8 X 8 pixel patterns and their contrast-reversed counterparts. For Kistograms, which do not distinguish between spikes at the center of
set 2 (Kjaer et al. 1997), 16 stimuli were used: a set of eighk18 a bin and those near the edges (Richmond et al. 1987; Sanderson and
pixel patterns and their contrast-reversed counterparts. Kobler 1976; Silverman 1986).
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FIG. 2. Representation of spike trains using principal
component analysi#:: rasters of the responses of a single V1
cell to 2 stimuli. Horizontal axis shows time from stimulus
onset in milliseconds. Each tick mark represents an action
potential; each row of tick marks represents a single stimulus-
elicited response.eft andright: responses to different stim-

ey . e . uli. Mean spike count is equal for the 2 sets of responses, but
0 100 200 300 0 100 200 300 the responses to the 2nd stimulusglit) show a greater
concentration of spikes occurring betwees0 and 120 ms
after stimulus onseB: spike density functions corresponding
to the rasters above. Horizontal axis shows time from stim-
ulus presentation (ms) on the same scale as for the rasters.
Vertical axis shows the instantaneous firing rate at each time
in spikes/s. Dark line shows mean firing rate at each time; the
wider gray line shows one standard error above and below the
mean. Concentration of spikes in the early part of the re-
sponses to the 2nd stimulusght) is again apparenC: 1st
4 principal components of the responses of the cell. Horizon-
tal axis of each panel shows time, in milliseconds, after
stimulus presentation. Note that a positive coefficient for the
2nd principal component indicates a high concentration of
spikes near the beginning of a response. Scale of the principal
components and the corresponding coefficients is arbitrary
and therefore is omitted: principal component representa-
tion of the responses shown in the rasters and densities. Each
bar plot shows the mean and standard deviation of the 1st 4
(left to right) principal component coefficients of the re-
sponses. Line connecting the bases of the bars shows 0. Note
the difference in the 2nd principal component coefficients

trials

250

spikes / second

6 ) 260 ' 0 ) 260 ) 0 ) 260 ) 0 200 ) between the 2 panels. This difference reflects the fact that the
R spikes in the responses shown in tight are more concen-
time (mS) trated at early times than are the spikes in the responses

shown in thdeft. (In the calculations in the text the principal
components are translated to always be positive; here we use

D principal components centered at 0 to emphasize the differ-
ence in the the coefficients with respect to the 2nd principal
component.)

¢1 (I)z ¢3 q)4

We used principal component analysis to reduce the dimensionmoéiltiples of ®, and ®, are subtracted from the results. This manip-
the data set. Principal component analysis defines an ordered setlafion is similar to rewriting the expressia+ bx asa + bx, +
axes, each accounting for more of the variance in the data set tihéx— Xo). It is conventional to use the average waveform as the base
those that follow. These axes can be computed by finding the eig&aveform, translating the axes so that the average waveform corre-
vectors of the covariance matrix of the data (Ahmed and Rao 19Aponds to a vector of zeros. This causes some valugs ahd ¢, to
Deco and Obradovic 1996). Each data point is defined uniquely by it negative. Here we translated the axes soghandd, are always
projections onto these axes; these values are called the coefficig@sitive and logarithms could be taken. The specific form of the new
with respect to the principal components, or principal componebase waveform is not important for our analyses.
coefficients. We use the code formed by the firgtrincipal compo-
nent coefficients because it is the optirkadimensional linear code Model of response variability
for least-squares reconstruction and minimizes an upper bound of = _ _ o _
information loss through a one-layer network (Campa et al. 1995;Estimating channel capacity requires estimating all possiple (
Deco and Obradovic 1996; Plumbley 1991). Principal-componefit) response distributions. Our estimate of these distributions must be
analysis has a long history in signal analysis (Ahmed and Rao 19#3sed on the responses elicited by stimuli actually presented in our
and has been used to study information coded by temporal modulat®fperiments. Itis important to note that if the responses elicited by the
in neuronal responses (Heller et al. 1995; Kjaer et al. 1994; McClurkdimuli presented in our experiments are not representative of the
et al. 1991; Optican and Richmond 1987; Richmond and Optic&@sponses elicited by other stimuli, our model will generalize poorly.
1987, 1990; Tovee and Rolls 1995; Tovee et al. 1993). Figure 2 Show§(jeally, we would estimate t.he two-dimensional conditional distri-
rasters of the responses elicited by two stimuli from a single \Aution of responses(¢,, ¢.|s) directly for each stimulus. However,
neuron, the corresponding spike density functions, the first four priwe did not have enough responses to each stimulus to do so. Instead,
cipal componentsp,—®,, of the responses from the neuron, and th&e described the distributions ¢ and¢, individually, and assumed
principal component representation of the two responses. that ¢, was independent op, (except for correlations imposed by

In this study, each neuronal response was represented by the #atacation at the bounds of the response space, see following text). To
responding coefficients with respect to the first and second princif precise
components of the spike density functions (Richmond and Optican _ 2 min
1987, 1990). We call these coefficiertis and ¢.,. ¢, and ¢, can be P(¢uls) = Glpis, a1/K($r)  when = o1
translated by arbitrary constants as long as the appropriate constant =0 otherwise 0



2864 M. C. WIENER AND B. J. RICHMOND

and whereSis the set of stimul, Ris the set of responsesp(r|s) is the
_ conditional probability of response given stimuluss, p(s) is the
P(dals, b1) = Gluas 02)/K, when ¢5"(dy) = b = $5%(b) probability that stimuluss occurred, andh(r) = =, p(r|s)p(s) is the
probability of response. Equation 5is general; it can be applied to
responses of any dimension. We used both the one-dimensional

whereG is the Gaussian distribution with indicated mean and varspike count code and the two-dimensional principal component code,

ance, s andajzS are the mean and variance ¢felicited by stimulus r = ¢ = (¢1, do).

s, ¢ is the minimum value ofh;, 5" (¢,) and 3% (p,) are the The transmitted informatiol{®;S) depends op(s), the distribution

calculated bounds o, for given ¢,, andK, = [ do,p(¢d4|s) and  of presentation probabilities of the stimuli (sEg. 5. The channel

K, = f‘:;;:fi’;d¢2p(¢2|s) are normalizing factors. We show in thecapacityof a cell is the maximum value of transmitted information

results that the Gaussian distribution provides an acceptable fit to gwer all distributionsp(s), where the set of stimuts should now be

distributions of¢; and ¢, for each stimulus. understood to include all possible visual stimuli. Finding this maxi-
Although ¢, and ¢, are by construction uncorrelated in the remum requires knowing the conditional response distributiois)

sponses from each neuron, correlations are sometimes present ingdey|| stimuli s. We estimate the distributions using the model

responses elicited by individual stimuli. kesuLTs we observe that yescribed earlier.

the set of responses is bounded; these bounds will be describeg ., Egs. 1and2, we see that estimating(¢|w), the probability

quantitatively at that point. We observe correlations betwgeand i which the distribution with meap = (i, ) elicits response

¢, only in those distributions lying close to the response bounds. _ (by, bo), requiresiLy, w, o2, and o2. Given the power-law

Therefore our model assumes that correlations betwigeand ¢, ré?}ations between the means and variances of distributiEmsd, s,

arise only as a result of truncating distributions at the boundaries .
the response space. We make this same assumption when chara glprmines botiw3 and o3 but not p,. Thus for eacty, there are

izing the set of all possible response distributions to calculate chanf&"Y possml_e response dlstrl_butlons, |de_nt|ca| except for translation
capacity. We make this assumption because we do not have dat¥'t=- Each distribution, then, is characterized completely by the two
justify any other: under other circumstances (and with sufficient daﬂggeanslh andp.,. When calculating transmitted information, only the
we might find, and include in a model, such correlations. The clo§®served distributions are considered (Figtd); when calculating
match of our estimates of transmitted information to those obtainéfiannel capacity, all possible distributions must be considered (Fig. 3,
using other well-validated methods (sesuLT9 suggests that in this botton).

case the assumption is justified. According to this model, two stimuli that elicit the samegand u,,

from a neuron in fact elicit identical response distributions and there-
fore cannot be distinguished from one another by that neuron. Thus a
stimulus can be identified simply by the mean response it elicits.

Two-dimensional Gaussian distributions (given our correlation a§guation 5now can be written
sumptions, preceding text) are characterized by two means and two
variances. All four parameters can be measured from experimentally e p(d|w)
observed responses. kasuLTs we show that the variances ¢f and H(®; ) = | dpp(p) | dbp(dlw) log, n($) ©®)
¢, distributions are related to meah by a power law

=0 otherwise ?)

Means and variances of response distributions

wherep(w) is the probability with which the distribution with mean

2 A
or = expa)ui 3 is presentedy(¢|w) is the probability with which the distribution with
which is equivalent to meanu = (uy, 1) elicits responseé = (¢4, ¢,), andp(¢) = [, do
p(¢|w) is the total probability with which responsg occurs. The
log (¢7) = & + b; log p, (4)  channel capacity is the maximum of this expression over the two-

. . dimensional distribution of probabilitigy(u) = p(w,, wo)-
2 —
wherep, andoy are the mean and variance gf for i = 1, 2.a and A derivation of Eq. 6 is given in Gershon et al. (1998). That

b, are estimated by linear regression. These regressions were use L . . .
estimates? for i = 1, 2 in Eqs. 1and2. Note that the variances of éjeﬁ{/atlon is expressed in terms of the spike count code but remains

both ¢, and ¢, were modeled as a function of the meandgf (we valid Wh_en spike count is rep!aced with any oth_er response code.
justify this in RESULTS. Information apd channel capacity based on the spike count code were

Estimates of log¢) and log¢?) obtained by taking the logarithm of C@/culated using the method of Gershon et al. (1998).
the sample mean and variance are biased, resulting in underestimatioh"® search for the maximizing set of probabilities is subject to three
of the variance of response distributions and therefore overestimatgistraints: the probabilities must be nonnegative; the probabilities
of transmitted information. We corrected for the bias using a Tayl#ust sum to one; and the range of means must be finite. The first two
series expansion; only a few terms are needed for good res@@gstraints arise from intrinsic properties of probability distributions.
(Kendall and Stuart 1961, p. 4—6). If the third constraint is violated, the transmitted information can be

We also used linear regression to estimate the mean and varianci@ffite and the problem of maximizing transmitted information is
the values of¢p, when ¢, takes on a given value, no matter whichll-posed. The implementation of these constraints and other numer-
stimulus elicited the response. ical issues are discussed in threPENDIX.

We did not penalize distributions for probability weight falling
outside the response envelope boundsfiofas we did for probability
weight falling outside the observed ranged]); we simply ignored

The information carried in a neuron’s response about which me#fat portion of the distribution. This allows the widest possible sep-

ber of a set of stimuli is present (Cover and Thomas 1991) is defingghtion between distributions, causing our estimates of channel capac-

as ity to be larger than if the boundaries had been strictly enforced. Thus
our procedure was designed to give the most generous estimates

p(r|s) possible (consistent with the constraints estimated from the data) of

p(r) ®) " channel capacity associated with temporal coding.

Transmitted information and channel capacity

I(R; ) = >, p(s)p(r|s) log,

st
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FiIG. 3. Schematic of distributions used to calculate
transmitted information and channel capacity. Lines repre-
sent the boundaries of thig-$, envelope: region ob,-d,
space in which responses fall. Ellipses represent distribu-
tions of responses elicited by various stimdlop calcu-
lating transmitted information in an experiment. Response
distributions elicited by 4 stimuli, A, B, C, and D, are
(l) shown. (These stimuli are merely illustrative and do not

1

correspond to any stimuli from our actual experiments.)
Mean values ofp, and ¢, ., and u,, of each distribution
can be calculated from the data, and the variances ahd
(l) ¢, 02 and o2, estimated from the mean @, using the
2 regression relation®8ottom when considering channel ca-
pacity, we must consider all possible pairs of meansu,.
Value of u, determines botle? and o3, so all distributions
with a given value ofu, will have the same shape. Distri-
butions elicited by A, B, and Qdp) are shown, along with
several other possible distributions with the same mean
values of¢,. (Distribution elicited by stimulus D is omitted
for clarity.)

RESULTS construction (Ahmed and Rao 1975; Deco and Obradovic
We considered 6 neurons from one experiment in V1, 3§96), they are not independent. Figure 4 shows scatterplots of
neurons from a second experiment in V1, and 19 neurons frétr Versuse, for two cells from V1 and two cells from IT. In
IT. To calculate transmitted information and channel capacitlese four cells, and in all other cells in our sample, the range
we characterized the space of responses, parameterizég b@f ¢- increased with increasing,. The apex of the cone is the
and ¢,, the coefficients with respect to the first two principal{1, ¢,) pair representing trials when no spikes were elicited.
components; determined the regression relations for the meanghe limited range ofp, for a given value ofp, reflects the
and variances o, and ¢, elicited by the stimuli; and con- fact that only a certain amount of temporal modulation is
structed a model for the distributions ¢f and ¢.. possible with a given number of spikes. If eachkafpikes in
¢, and ¢, are somewhat abstract, but are related to biolog-train could be placed in any oftime bins, assuming only
ically relevant aspects of the response. Responses with hight no bin could hold more than one spike, the number of
(low) values of¢, correspond to responses with high (lowhossible patterns would b&) = nl/[k!(n — K)!]. The range of
numbers of spikes (McClurkin et al. 1991; Richmond angalues of¢, seen under this combinatorial assumption (Fig. 5,
Optican 1987, 1990; Tovee et al. 1993); in our data, the medigiin line) is much wider than the range observed experimen-
correlation between s_p|ke count aggd was 0.91 (interquartile tally for any given number of spikds (Fig. 5, dots).
range 0.86-0.97), is a coarse £10 ms) measure of tem-  Becayse we do not understand the spike generation process
Bk enough to predict the response envelope, we developed a

concentrated in the early part of the response (Fig. 2). &, corresponding to different values @f,. We divided the
range of¢, into a number of bins, each of which definega
Response space slice in the two-dimensional response space. Figérsteows
Although the coefficients with respect to the first and secortidle top left scatterplotfrom Fig. 4 with slice boundaries su-
principal componentsd{; and ¢,) are linearly uncorrelated by perimposed. The mean and varianceggfwere calculated in



2866 M. C. WIENER AND B. J. RICHMOND

rod17 (V1)

3000 4000
1500

1000

2000

500

1000

0
0

0 1000 2000 3000 4000 0 500 1000 1500

wal87 (IT) prx2 (IT)

P,

1000 1200
800 1000

800

600

600

P2 2 oo
Ny S X 3 .t %
2, nz'{k,:‘.‘;‘?_s:g.\“: R

400
400

200
200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

FIG. 4. Scatterplot of responses for 4 cells. For each panel, the horizontal axis ¢h@nsd the vertical axis shows,. Each
point shows the response(, ¢,) for a single trial. Althoughp, and ¢, are linearly uncorrelated (by construction), they are not
independent: range af, depends on the value df;.

each ¢, slice. Figure 8 shows an example of the linearMean-variance relations o, and ¢, by stimulus
relation between log(variance) @f, and log(mean) ofp, in ) ) ) _
eachd; slice. This relation was significant in 47/54 neurons at The logarithms of the mean and variance of spike count in
the P < 0.01 level (mediarr® = 0.91,igr = 0.79—0.94). response to different stimuli are linearly related (Dean 1981,
Figure ac ShOWS an examp|e Of a fit Of the mean@j as a Gershon et al. 1998, Lee et al. 1998, O'Keefe et al. 1997,
quadratic function of the mean dfl in each slice. The qua_ Tolhurst et al. 1981, 1983, van Kan et al. 1985, Vogel et al.
dratic fit was rejected in only 3/54 neurong test,p = 0.01) 1989). Becausep, is correlated strongly with spike count
and is used here. (Richmond and Optican 1987), it is natural that the logarithms
We used these relations to estimate the bounds of the eng%/-tgf rzgi?(r)lnzngpvgng%cle' gle cﬁljr(:zare (;e7|%teigr“negrgl(m
lope containing the response spacefy(d;) * k.6 (), _ : - A T
wherefi and& are the mean and standard deviation estimat@d?L: Sé€ Fig. 7). By simple extension, we might expect there
as in the preceding text. For each cél, (k_) was chosen so 0 be a linear relationship between Iog(mea_n) an(_j log(variance)
that all but 0.1% of the points fell below (above) the boundarOf ¢, as well. However, such a relation existed in only 11/54

; . f the neuronsR < 0.01; median? = 0.09,iqr = 0.02—0.21).
Several points were allowed to fall outside the bounds ﬂstead, we foISnd that the variance &f eIiC(I:ited by a singl)e

prevent excessive influence of outliers. We show below théﬁmulus increased with the mean of (in 43/54 neurons at
small changes in the response envelope do not affect gL 0.01: median? = 0.66,igr = 0.38—0.84; see Fig. 8). This
results. For all 54 neurons, the response space envelope €stisonsistent with the fact that the range (variance)dgf
mated using the regression (thick lines in Fig. 5) was mughcreases with increasingy, (Fig. 4). Adding meang,) to the
narrower than the envelope assuming spikes can fall in arlipdel added very little explanatory power (median increase in
trary 1-ms bins (the thin lines in Fig. 5). r> = 0.02, igr = 0.0-0.09); for simplicity, we omitted
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6000

FIG. 5. Spike count, envelope of a V1
cell. Horizontal axis shows spike count (which
is strongly correlated witkp, ), the vertical axis
¢,. Dots show spike count angl, for individ-
ual trials. Thick lines show the spike coudit-
envelope predicted using the linear relation
between log(spike count) and log(variance) of
¢, in responses with that spike count, and the
quadratic relation between spike count and the
mean of¢, in responses with that spike count,
and the assumption that the distributiondaf
in responses with a given spike count is nor-
mal. Thin lines show the spike cout; enve-
lope calculated by taking the largest (or small-
est) possible projection onto thg, waveform
of responses with a given number of spikes.
More extreme estimate does not take into ac-
count when spikes are most likely to occur or
even that it is unlikely that many spikes will
occur at nearly the same time. Spike count is
used here instead df, for ease of comparison
with the extreme bounds.

4000

0,

2000

—— extreme

cell: mg06

-2000

0 2I0 4IO 66 8I0
spike count

mean(p,) from the model. Using these regressions, we pré&+ansmitted information
dicted the variance ofp; and ¢, distributions elicited by
different stimuli from the means of thg, distributions.

To check that our regression estimates were robust,
divided the data for each neuron into two sets. The regressi
for the two halves were statistically indistinguishabf %
0.01) for all 54 neurons. The fact that different subsets of t
data result in indistinguishable regressmn lines shows that &
model can generalize, and supports using the model to pr
the structure of responses to stimuli other than those prese
in our experiments.

In this study, our goal was to estimate channel capacity, not
gnsmltted information (which has been estimated for these
%ga in the past) (see Eskandar et al. 1992; Heller et al. 1995;
jaer et al. 1997; Richmond et al. 1990). Transmitted infor-
I51%at|on was calculated as a test of our model: estimates based
the model can be compared with estimates obtained using a
viously validated neural network method (Golomb et al.
ﬂé 7; Kjaer et al. 1994). If the assumptions in our model are
reasonable, the two methods should give similar results. This
has been shown to be the case when spike count is used as the
neural code (Gershon et al. 1998); we found that the two
methods also give similar results for thé,( ¢,) code used
Estimating the transmitted information between the visuhkere. The least-squares line relating the two information esti-
stimuli and the neuronal responses requires estimating mates had intercept 0.04 and slope indistinguishable from 1.
conditional response distributiond, |s) andp(¢,|s). We as- Ther? value was 0.94. The difference between the two mea-
sumed that theéb, andd¢, distributions are separable (except fosurements was of the order of magnitude by which Golomb et
the relation betweerp, and the range ofh,) and examined al. (1997) found that the neural network underestimates trans-
normal, lognormal, and gamma distributions, each truncatednaitted information with limited numbers of samples. Finding
the bounds of the response space, as models foptlead$, that the information measurements using the two methods are
distributions. similar led us to believe that the assumptions in our model are
Using the observed mean and the variance estimated fropasonable and that the model can be used to estimate channel
the regression relation, the normal distribution (truncated at thapacity.
boundary of the response space) was an acceptable fit for 79%igure 9 shows, for each neuron, the transmitted information
of the distributions ofp, elicited by individual stimuli, 83% of using ., ¢,) as the neural code plotted against transmitted
the distributions ofp, elicited by individual stimuli, and 79% information using spike count as the neural code. There was no
of the distributions of, given ¢, regardless of stimulus significant difference in the information transmitted using the
(Kolmogorov-Smirnov testP < 0.05). The gamma distribu- spike count code by neurons in V1 and IT (V1: 0.35 bits
tion was acceptable in almost exactly the same cases as rtreglian, interquartile range 0.27-0.55; IT: 0.31 bits median,
normal distribution, but the lognormal distribution was rejecteiiterquartile range 0.18—0.3%; > 0.01 Kruskal-Wallis). Al-
much more frequently. We chose to use the normal distribttough the increase in transmitted information from the spike
tion. Because the gamma distribution fit nearly as well as tlkeunt code to thed,;, ¢,) code is significantly larger in V1
normal, the information calculations presented in the followindpan in IT (P < 0.01), the difference in information transmitted
text were repeated using the gamma distribution for sevetsing the ¢,, ¢,) code is still not significant (V1: 0.52 bits
cells; the results were indistinguishable from those obtainetkdian, interquartile range 0.40-0.78; IT: 0.37 bits median,
using the normal distribution. interquartile range 0.22—0.5%, > 0.01). This represents an

Distributions of principal component coefficients
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FIG. 6. Predictors of the mean and variancebgfor
0 1000 2000 3000 4000 a given range ofp,. A: dividing the range ofp, into
“slices”. Top left scatterplofrom Fig. 4 is reproduced
1 with the boundaries of theé, slices superimpose®,
(¢4, ¢,) for a single responseB: log(variance) ofd,
B 4 C T values in¢, slices as a linear function of log(mea).
Horizontal axis shows the meafy value in each slice.
T Vertical axis shows the variance ¢f, in each slices,
values in a singlé, slice.C: mean of¢, in ¢, slices as
a quadratic function of,. Horizontal and vertical axes
- show the mean values af, and ¢, respectively.e,
values in a singlep, slice. In bothB andC, e represent
points based or=11 responses. Points based on fewer
responses are represented by the number of responses.
Regression lines were calculated using only means and
variances based onll responses. Note that the axes in
A andC are linear, whereas the axesBrare logarith-
mic.
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increase in transmitted information of 55% (median; interquaspike count code of neurons in V1 and IT (V1: 1.1 bits median;
tile range 22—-74%) for neurons in V1, and 19% (mediaimterquartile range 0.91-1.30; IT: 1.4 bits median; interquartile
interquartile range 9-41%) for neurons in IT. Transmitteghnge 1.2-1.5P < 0.01 Kruskal-Wallis). There was no sig-
information usinge; (which is correlated strongly with spike nificant difference in channel capacity using tiig,(¢,) code
count) as the code was 12% (median; interquartile ran@¢1: 2.0 bits median; interquartile range 1.8-2.3; IT: 2.2 bits
3—-29%) greater than transmitted information using spike counkdian; interquartile range 1.8-2.5). This represents an in-
in V1 neurons and 5% (median; interquartile rangé-11%) crease in channel capacity of 84% (median; interquartile range
greater in IT. 62—-124%) for neurons in V1 and an increase of 52% (median;
To check that we did not lose stimulus-related informatioimterquartile range 32—95%) for neurons in IT. This increase in
by smearing spike arrival times with too broad a convolutioghannel capacity is a result of temporal modulation and is
kernel, we repeated the information calculations with rearger than estimated using only the observed responses (trans-
sponses smoothed using a Gaussian kernel with a standaitied information). Channel capacity usinfgy (which was
deviation of 1 ms rather than 5 ms. No additional informatiogorrelated strongly with spike count) as the code differed from

was found. channel capacity using spike count as the code by 7% (median;
interquartile range-7—-22%).
Channel capacity We performed several analyses to verify that our estimates

of channel capacity are robust with respect to small changes in

Figure 10 shows, for each neuron, the channel capacity usthg response space boundaries. As for spike count code (Ger-
(¢4, ¢,) as the neural code plotted against channel capacdyon et al. 1998), channel capacity depends on the range of
using spike count as the neural code. There was a small begponses the cell is capable of emitting in response to a
significant difference between the channel capacities usistimulus. If we underestimate a neuron’s dynamic range, we
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diffuse (not shown). The projection of the{, ¢,) distribution

O Visetd ‘ onto ¢,, that is, the distribution of meat, implied by the

O Viset2 ol two-dimensional distribution, is shown as a histogram imme-
A T diately below Figure 1B shows the distribution of mea,
values that achieves channel capacity usingalone as the
neural code. In both histograms the horizontal axis shows mean
¢, values, and the vertical axis shows the frequency with
which distributions with the appropriate mean value are pre-
sented to achieve channel capacity. The projection of the
optimal two-dimensional distribution onto thg, axis is less
concentrated than the optimal one-dimensional distribution.

1076

1075+

var ¢,

1074 Role of further principal components
Throughout this study we limited our analysis to two prin-
cipal components. The reason was practical: using a three-
component code increases the computational burden beyond
the resources currently available to us. We can, however,
10°3] address the issue of whether the use of more principal compo-
- , nents in the response representation can be expected to lead to
50 100 500 1000 substantially higher estimates of information or channel capac-
mean ¢1 ity. Successive principal components, by definition, account
Fic. 7. Log(mean) vs. log(variance) of the distributionsdaf elicited by O successively smaller portions of the response variance, that

different stimuli. Horizontal and vertical axes show (on a logarithmic scale) the
mean and variance af, respectively. Each point represents the responses to
a single stimulus. There were 128 stimuli for the V1 set 1 neurgn 16

stimuli for the V1 set 2 neuronty), and 32 stimuli for the IT cell £).
Least-squares regression line for each data set is shown. This example shows
the cell with the median slope from each data set.

5x103

will underestimate its channel capacity. Here we estimated the
neuron’s dynamic range based on the responses observed. It is
possible that we have not used stimuli that elicit the highest
possible firing rates (and sp,) from these neurons. Nonethe-
less the peak firing rates we saw in these V1 and IT neurons are
similar to those reported by others using a wide variety of
stimuli, including natural stimuli (Baddeley et al. 1997; Perrett
et al. 1984; Rolls 1984; Rolls et al. 1982; Tolhurst et al. 1981,
1983; Vogel et al. 1989), so we believe that our estimate of the
dynamic range is reasonable. For several neurons, we exam-
ined the effect of allowing part of the distribution ¢ to fall
outside the observed dynamic range. When we allowed as little
as 0.5% or as much as 5% of the distributiondgf to fall
outside the observed range, estimated channel capacity . ot ., .
changed by<4%. Similarly, widening the bounds o, for
given ¢, by 5% increased the channel capacity§%. If new
evidence were to show that the proper range for either ¢,

is larger than we have estimated here, channel capacity could

5x10%

f o,

variance o

5x10°

be recalculated using these methods. - RN
x o c.
Distribution of responses achieving channel capacity ° o,
We estimated channel capacity by finding the distribution (in .
2 dimensions) of meanf{, ¢,) responses that allows the cell 2000 3000
to transmit the maximum possible information using a code
based onp, and ¢,. mean of ¢2

F_igure 1A ShOWS an example of such a distribution. The g, 8. variance ofs, is better predicted by mean @i, than by mean of
horizontal and vertical axes show meanspgfandd,, respec- ¢,. Top variance of¢, by stimulus plotted against meapy by stimulus.
tively. Shades of gray indicate how frequently each mean Hegrizontal axis shows mearh, and the vertical axis shows variange.
presented to achieve channel capacity. Because some of R8T “REEeq Sl W RIS FUEEe POCs T e Both:
distributions are quite broad, the distribution of observed rgses are logarithmios, responses elicited by a single stimulus. Regression

sponses arising from this distribution of mean responsesiiies are superimposed.



2870 M. C. WIENER AND B. J. RICHMOND

g
o

Transmitted information, which measures how well a set of
responses distinguishes among the stimuli actually presented in
0 an experiment, is sensitive to exactly which stimuli were
presented and how often. Channel capacity quantifies how
useful a neuron with a particular repertory of responses could
be for stimulus identification under the best possible circum-
stances: increased channel capacity means better stimulus iden-
tification. When the repertory of responses is based on a
A particular neuron’s responses, the calculated channel capacity
is an estimate of the neuron’s channel capacity. The accuracy
of the estimate depends, of course, on how well the model
O&b generalizes to responses to stimuli not presented in the exper-
o : : :

o) O V1set1 iment. To the extent it was possible to test here, our model

0 Viset? generalized well.

A T Using transmitted information, it has been estimated for
—— equality some of the data used in this study (Heller et al. 1995) and in
other similar studies (Tovee et al. 1993; Victor and Purpura
o o o s 20 195?{_6) that t_ergpt;)ral mkodulatiotn zlidds OC.:%]—O.Z Ibits to t_r:e it?for-d

- - g 5 L mation carried by spike count alone. Channel capacity base
spike count transmitted information (bits) on the two-principal-component code used here is greater than

FIG. 9. Tre_ansmitted_information using sp!ke count or two principe_al comehannel Capacity based on the spike count code by 0.8-0.9
ponents. Horizontal axis shows transmitted information based on spike coyits  This is nearly equivalent (at least in V1) to adding a
Vertical axis shows transmitted information based on a code usingdhathd . . . ..
by — equality. second independent cell using the spike count code. This is

much more than estimated using transmitted information, but

is, their range decreases. This decrease is rapid in our dét.less than would be expected if all degrees of freedom
Therefore their information content (and so their contributioprovided by the individual spike times carried independent
to channel capacity) must decline unless the noise associdfé@rmation. This is true despite the fact that for the code
with each principal component also decreases with the rantjiteluding temporal modulation we allowed our model to give
Figure 12 shows that this decrease does not happen in our d&@. highest estimates of channel capacity consistent with the
Each column shows the distribution (across 54 cells) of tfigsponse envelope and noise structure estimated from the data
signal-to-noise ratio (the variance of mean responses to stin{§gevETHODS).

divided by the median variance of responses to single stimuli)

for spike count or one of the first 10 principal components. Representing responses with temporal modulation
signal-to-noise ratio less than one means that the variability of

responses to a given stimulus is greater than the variability ofSpike count can be thought of as measuring spike arrival
mean responses to different stimuli, so the responses disties extremely coarsely, recording only whether each spike
guish only poorly among the stimuli that elicited them. Thus
the third principal component will contribute much less chan- R

iy
(3]

riiug
>R P

¢, and ¢, transmitted information (bits)
=
o
O
[m}

e
=)

nel capacity than the first and second principal components, _ o
and the fourth and higher principal components are expectedto £ 3.
contribute insignificantly if at all. We verified that, as expected, £ & at
the fifth through tenth principal components contribute no 2 25 | H
information not redundant with information in the first princi- 8 o9 .
. Q O 8 A
pal component. Thus our code using orly and ¢, should S A 4
carry a very large proportion of the information available in the < 2° %3 =h|
responses. = O %@
S s Q0m 4
DISCUSSION © R
Here we have constructed a model of neuronal responses, <10 O Viseti
based on principal component analysis, that includes both T 0O Viset?
response intensity (firing rate) and a low-precisiarnl() ms) T o5 A :-‘Luality

representation of temporal modulation. This temporal precision =~
and this code have been shown to carry a very large portion of
the information useful for the identification of statically pre- 0.0
sented two-dimensional stimuli (Heller et al. 1995; McClurkin
et al. 1991; Optican and Richmond 1987; Richmond and Op-
tican 1990; Tovee et al. 1993). Temporal modulation at finer¥'e- 10. Channel capacity using spike count or 2 principal components.
time scales can be used to signal rapid changes in the stim%@

H

zontal axis shows channel capacity based on spike count alone. Vertical
shows channel capacity based on a code usingnd ¢,. —, equality.

(Buracas et al. 1998), but thus far has not been proved us % pacy upinand ¢ B

for stimulus identification. spike count alone.

0.0 OI.5 1I.0 1I.5 2.0 2.‘5 3:0
spike count channel capacity (bits)

nnel capacity usingp(, ¢,) is always greater than channel capacity using
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A P (0,5 9,)

2000 g

1500 Fic. 11. Distributions of responses that

o.15 achieve channel capaciti: distribution of mean
(1, ¢,) pairs that achieves channel capacity
based onp, and¢,. Mean values o, and¢, are
plotted on the horizontal and vertical axes; shades
of gray show the probability with which distribu-

0.10 tions with the given means must be presented to
achieve channel capacity. Note that the means of
the distributions are clustered near opposite edges
of the response space. Because some of these
distributions are broad, however, the resulting

0.05 distribution of observed responses is quite dif-
fuse. A histogram of the projection of the distri-
bution of ¢, and ¢, onto ¢, alone is shown
below B: distribution of meang, that achieves
channel capacity using, alone as the neural

0.00 code. Mean values ap, are shown on the hori-
zontal axis. Probability with which each meén
must be presented to achieve channel capacity is
shown on the vertical axis. Projected distribution
shown inA is less concentrated than this distri-
bution based on thé, code alone. Two-dimen-

500 . . sional distribution loses somg, information be-

(l)1 (prOjeCtlon) cause the resulting distribution ap, is not
optimal. This loss of information is offset by a
gain in information fromds,.
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arrived during the sample interval or not. The principdias been examined in the responses of monkey cortical neu-
component code considered here incorporates tempomats, however, less temporal precision has been found. Heller
modulation on a somewhat less coarse time scalEd(ms). et al. (1995) considered a variety of codes with a broad range
Is even more precise representation of the time course afftemporal precisions and found that the maximal information
responses from single neurons useful for transmitting infowas carried by a principal component code cut off at a band-
mation about stimuli? width of ~25 Hz in V1 and~10 Hz in IT, corresponding to
Spike times originally were measured with 1-ms precisiomeasurement precision of approximateid0 ms in V1 and
one way to increase the precision of the representation is%@0 ms in IT. Hertz and Richmond (1997) found that the first
retain this precision when calculating the spike density funspike in responses in V1 was placed with a precision of
tion rather than smoothing the data. A number of researcheygproximately=15 ms. Victor and Purpura (1996), using a
have reported finding information about rapidly changing dlifferent approach, found precisions ranging frarb to £15
moving stimuli encoded using precisely timed spikes. Bair amds in neurons in areas V1 and V2. More recently Oram et al.
Koch (1996) found that coherently moving random dot stimu{iL999) confirmed directly that high-precision temporal patterns
elicited spikes timed with precisions ranging fran® to =15 in neuronal responses from both V1 and LGN are stochasti-
ms in neurons in area MT of the monkey brain. Buracas et ahlly related to the spike count and (low-bandwidth) poststimu-
(1998) found approximately the same range of precisioBto lus time histogram and therefore can carry no information
plus or minus>10 ms) in area MT in response to rapidlybeyond that available from the spike count and poststimulus
moving Gabor gratings. Bair and Koch (1996) did not examirtane histogram. In our own data, we found that retaining
the information content of responses; Buracas et al. (1998) digleater temporal precision in the responses revealed no addi-
but did not report the least temporal precision necessarytional information. We conclude that the information carrying
encode the information they found (although they indicate thespacity using temporal modulation at the precision used here
a bin size of 8 ms, corresponding to a precisiontegf ms, is (*+10 ms) is likely to include almost all of the information
adequate). carrying capacity available at any time scale for identifying
When information about the identity of a stationary stimulustationary visual stimuli.
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this form. Codes based on principal components are linear
w{ ¢ codes, and linear codes form a small subset of possible neural
: codes. The brain may use nonlinear codes that would not be
efficiently conveyed using principal components. Latency, for
example, which is not concentrated in any single principal
.t component, has been shown to carry information about the
@ . luminance and contrast of visual stimuli (Gawne et al. 1996;

: Mechler et al. 1998; Wiener et al. 1998). Information trans-
mission by spike patterns such as bursts also has been studied
(Cattaneo et al. 1981; DeBusk et al. 1997; Reinagel et al.
1999). Nonlinear codes are not necessarily more effective
representations of neuronal spike trains than linear codes
: ’ (Fotheringhame and Baddeley 1997), but we cannot rule out
- e S SR S SRR LR SR that some nonlinear code might carry more information than
we have found here.

signal to noise ratio

sp 01 2 03 04 G5 0 07 G 09 O10
Fic. 12.  Fourth and higher principal components of responses are noi§tatistical model
Boxplot showing the distribution (across 54 cells) of the signal-to-noise ratio
for spike count and for the first 10 principal component coefficients. The The response model used here relies on the linear relation-

signal-to-noise ratio is the variance of mean responses to stimuli divided by %ﬁip between log(mean) and log(variance)pef This relation
median variance of responses to single stimuli. Notches in each box show 959

Y . >
confidence intervals on the median; the edges of the box show the 25th %élm”ar to the frequ?ntly obser\{ed linear relation between
75th percentiles of the distribution, and the ends of the extended lines show{@g(mean) and log(variance) of spike count (Dean 1981; Ger-
5th and 95th percentiles. A value below 1 means that the variability éhon et al. 1998; Lee et al. 1998; O’Keefe et al. 1997; Tolhurst

responses to a given stimulus is greater than the variability of mean responsgeg)|, 1981, 1983; van Kan et al. 1985; Vogel et al. 1989). We
to_d_lfferent stimuli, so the responses distinguish poorly among the stimuli ”]%fgntified a similar relationship between the log(variance) of
elicited them. Therefore principal components above the 4th are not expec(tg . . \

> and log(mean) of¢,, allowing simple modeling of},

response varianceh, and ¢, were modeled as normal distri-

Neuronal responses also might be represented more gretions (truncated at boundaries estimated from the data; see
cisely using more principal components. Successive principaltHops) with the observed mean and variance calculated
components have more zero crossings (Fig. 2; see also Msing the measured regression relation.
Clurkin et al. 1991; Richmond and Optican 1987, 1990), so The model abstracts away some of the details of the ob-
they effectively code higher-frequency fluctuations in the spilserved responses, and it is reasonable to ask whether the
density function and so allow greater localization of whemodeled responses are sufficiently like the actual responses to
spikes occurred. However, successive principal componeriis, useful. Estimates of transmitted information using our
by definition, account for successively smaller portions of thmodel were close to those from a previously validated neural
response variance. Therefore their information content (andrsetwork method (Golomb et al. 1997; Heller et al. 1995; Kjaer
their contribution to channel capacity) must decline unless tee al. 1994). This leads us to believe that the model is suffi-
noise associated with each principal component also decreadestly accurate for the information calculations undertaken
with the range. We have shown that this does not happen in dware. If a better model of the distributions is found, calculations
data (Fig. 12). A variety of studies confirm that a few principadimilar to those presented here can be used to recalculate
components carry almost all of the information available in theansmitted information and channel capacity.
principal component representation. Richmond and OpticanThe response model necessarily is based on the responses
(1990) found that the third principal component increaseattually observed. It is not certain that the model accurately
information transmission by-5% over that transmitted by the predicts the responses that might be elicited using other stim-
first two principal components for neurons in V1, whereadli. Several potential problems with generalizing from ob-
Tovee et al. (1993) found an 8% increase. McClurkin et aderved responses can be identified. First, the responses elicited
(1991) found a 7% increase for neurons in the lateral geniculatsing the Walsh patterns used here might not indicate the full
nucleus. For the data in Heller et al. (1995), the third principdiynamic range of the neurons. We consider this unlikely,
component adds 8% to the information carrieddqyand¢, in  because the ranges of spike counts seen in V1 and IT neurons
V1 and <1% in IT, and the fourth principal component add#in these experiments were similar to the ranges reported by
<1% in each area. Therefore we believe that the first twathers using a wide variety of stimuli, including natural stimuli
principal components capture most of the temporal codisgich as hands and faces (Baddeley et al. 1997; Perrett et al.
capability of these neurons. 1984; Rolls 1984; Rolls et al. 1982; Tolhurst et al. 1981, 1983;

Principal components are a powerful statistical tool for repfogel et al. 1989). Another potential difficulty is that the
resenting neuronal responses. They identify the featureslagarithms of the mean and variance of responses elicited by
responses that tend to change most, leading to representatmthsr stimuli might not follow a linear relationship or they
that are efficient for both data compression and informatianight follow a linear relationship different from the one mea-
transmission (Campa et al. 1995; Deco and Obradovic 19%6red using these stimuli. Assuming a linear model seems
Linsker 1988; Plumbley 1991). However, the fact that inforreasonable because a linear relationship between the loga-
mation is available in the principal component coefficientsthms of the means and variances of spike count has been
does not mean that information is either used or transmitteddbserved in many parts of the brain (Dean 1981; Gershon et al.

to carry information.
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TABLE 1. Simplifications used in the response model
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Simplification for Modeling

Evidence

Could it Be Changed?

Responses distributed as modified Gaussians

No hidden variables: variances ¢f and ¢,
depend only on the means ¢f and ¢,

¢, and ¢, are uncorrelated for each
stimulus (except as imposed by response
space boundaries)

Variance of¢, depends only on mean of

Based on the data; presested in

Mean-variance relations for spike count,

¢11 and ¢2 i
No consistent correlations seen except
at boundaries

Based on the data; presentedriEBULTS

Given evidence for other distributional
forms, could use them

Difficult; a model with additional
stochasticity might be possible

Given evidence for correlations, easy
to incorporate them

Must specify means o, and ¢,, so

¢4, Nnot on mean ofp, could easily incorporate influence of

mean ¢b,)

1998; Lee et al. 1998; O’Keefe et al. 1997; Tolhurst et al. 198distribution. This allows the widest possible separation be-
1983; van Kan et al. 1985; Vogel et al. 1989). Furthermore vieeen distributions, increasing the estimate of channel capac-
cross-validated the model by dividing the stimuli in half angty. This deliberate overestimation was undertaken to obtain an
comparing the resulting mean-variance relations. In all cellgpper bound on channel capacity. Estimates of transmitted
the two relations were indistinguishable, supporting the moghformation were unaffected, because the distributions of ob-

el's ability to generalize, at least in this limited sense. All 0erved means and variances fell within the response envelope.
our stimuli were Walsh patterns, and we are unaware of any

studies comparing the variability of responses elicited by dif-
ferent kinds of stimuli. If responses elicited by other stimuli ar€omparison with other studies
substantially more or less variable than those elicited by the ) )
Walsh patterns, our model may not generalize well to re- Some researchers have reported that rapidly moving or rap-
sponses elicited by other stimuli. idly changing stimuli elicit large numbers of precisely timed
We summarize some of the simplifications made in o@pikes in the lateral geniculate nucleus and area MT, transmit-
model in Table 1. ting, in some cases>100 bits/s of information about the
changing stimulus (Buracas et al. 1998). However, only much
lower precision timing £10 ms) and much lower information
transmission rates (up te4 bits/s) have been measured using
Spike count and temporal modulation are linked at the mastatic stimuli (Heller et al. 1995). Our estimates of channel
basic level. When there are no spikes, there can be no tempaagacity (-2.2 bits in a 330-ms window o¢ 6.6 bits/s), which
modulation. Trains with larger numbers of spikes can formvere designed to err on the side of generosity, fall short of even
larger numbers of distinct temporal patterns: in the crudeBd bits/s (even allowing for a large, and unlikely, contribution
estimate, the number of possible temporal patterns involkingrom additional principal components). A major difference
spikes isn!/[kl(n — K)!], wheren is the number of distinct time between these approaches is that in the former, but not the
bins. If each pattern could occur with equal probability, thiatter, the neuron is essentially entrained by the rapid changes
number of temporal patterns observed, and therefore the rangéhe stimulus. Theunissen and Miller (1995) have referred to
of ¢,, would grow rapidly with spike count. If the trainthis as temporal coding of a signal, “characterized by a one-
becomes crowded— that is, when there are more than halftasone correspondence between the time of occurrence of a
many spikes as bins—the range decreases again, but this isseoisory event and the time of occurrence of the corresponding
an issue in our data. neural process,” distinguishing it from tempoeatcoding of a
The range of$, does increase with increasing spike courgignal, in which “information about static or dynamic signals is
and ¢, (Fig. 4) but more slowly than would be expected if alencoded in some aspect(s) of the temporal pattern of action
spike trains withk spikes were equally likelyg, is the inner potentials” without the action potentials being tied to changes
product of a spike density function witlh,, the second prin- in the signal.
cipal component of the data. Becaude tends to have a The effects of entrainment can be seen even during experi-
narrow peak (Richmond and Optican 1987), an extreme posients with static stimuli. Information transmission rates as
tive or negative value o, would indicate that many spikeshigh as 30 bits/s occur during the onset of responses immedi-
occur in adjacent bins in a response. Such tight bunching aitly after presentation of static stimuli (Heller et al. 1995),
spikes did not occur in these data. In fact, such bunchingtmough these rates drop after50 ms. Thus the high rate of
unlikely to occur in neurons with a refractory period. This mainformation transmission is not sustained during typical fixa-
give at least a partial understanding of why the observed rartgms (of ~300 ms) between saccades in normal vision. None-
of ¢, is smaller than would be expected if arbitrary patterns tfieless Richmond et al. (1999) found that in V1 neurons the
spikes were possible (Fig. 5). total amount of information available about the identity of
Within the constraints estimated from the data, we biasstimuli played one after another in a movie was greater when
our model to increase estimates of channel capacity dueetach frame was presented for 170 ms than when each frame
temporal coding. We did not penalize distributions for probavas presented for 136 ms. Elsewhere this information has been
bility weight falling outside the response envelope bounds fémund to plateau~150—200 ms after stimulus presentation
¢, (as we did for probability weight falling outside the ob{Gershon et al. 1998). Thus maintaining the highest possible
served range ofh,); we simply ignored that portion of the information transmission rate by rapidly changing the stimuli

Spike count, temporal modulation, and channel capacity
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may not be the best strategy if the goal is to identify objects wherep(¢,) is defined by
the visual field.

p(dy) = f dpadpop(pe, p2)P(Palps, wo) (A2)

Summary
bothC, (x) andC_(x) are nondecreasing functionsxfande is small.
We have constructed a model of responses including bdth. A2ensures thap(¢,) falls off rapidly for values of the principal
response strength and temporal modulation of firing rate. TI§&mponent coefficients outside the permitted range. To implement the

model clarifies the implications of assuming that the relatioﬁﬁtimization procedure, we need to translate this into a constraint on

between the means and variances of response features obs#’gﬁﬁgggﬁsgcéﬁfssie?(m;‘ Sfo;ctg eDrggﬁznmu{EeV?dﬁiﬁ%fnthe transmitted
during an experiment are representative of the neuron’s re- Pk space. g

sponses in general. The central feature of the model is that th@) = >, C.(d1 — d1ma)P(dilm)

variances of response features are predictable from the means.  ¢:>¢1ma

This model demonstrates that the variances of both response + D Cdimn— dUP(dim)  (A3)
strength and temporal modulation depend on the mean re- $1<01min

sponse strength, with important implications for neural infor- combining equationsidand A2 we arrive at

mation processing. As we have emphasized, use of the mo%ne(ii ged '

imposes dependence on how well the model generalizes to > Clp(n) = e (A4)
responses not observed in our experiments. The results here "

raise two Confllctlng_pOSS|b|I|t|eS. Th_e first is that the EXPeMyhich represents our third constraint. In our numerical calculations.
ments were not designed so as to display the best capabilitigSysee = 0.01.

of these neurons. The other is that our assumption that alirhe choice of the function§, andC_ involves a scaling issue not
possible responses within the two-dimensional response spa@sent when calculating channel capacity based on spike count
actually can arise may not be true. This naturally leads fgershon et al. 1998). Because the spike count takes on only integer
further experiments to verify under what conditions assum alues it has a natural scale that can be used in the penalty functions

. : : o andC_. The principal components, however, have no such natural
tions made about these features remain valid. A critical QUERale. Dividing all the principal component coefficients by some

tion for the future is whether response properties elicited RYnstant should not change the information or channel capacity, and
stimuli of one kind (here, Walsh patterns) are the same iRerefore we must make sure that it does not change the val@s of

responses elicited by stimuli of other kinds. andC_ either. We have chosen to sc@le andC_ by the bin size
used for¢g, in the numeric calculations.
APPENDIX _ b1 = bimax)
C+(d)1 - ¢’1,ma><) - ( bin size )
The search for the maximizing set of probabilities is subject to three )
constraints: the probabilities must be nonnegative; the probabilities C (drmm— bp) = (d’l,‘min_. ¢1>
must sum to one; and the range of means must be finite. The first two ' bin size

constraints arise from intrinsic properties of probability distributionsrhiS means that each of the penalty functions grows roughly as if the
If the third constraint is violated, the transmitted information can hg ¢ represented spike count. Note that this means that using a larger
infinite and the problem of maximizing transmitted information ig,;mper of more narrow bins to cover a given range allows less of the
ill-posed. The maximization oEq. 6is performed numerically. The yropapility mass to fall outside the observed range than using a
numerical implementation requires that we discretize the continuadi$ajler number of wider bins. However, it does guarantee (as for
space of mean responses. We denote these discretized probabilitiegfi¥e count) that represents the largest portion of the (unweighted)
probability mass that can possibly fall outside the estimated range

_ | i (based on the observed values as described above). This scaling
Plpa) = f dnp(my) problem arises only when we want to penalize responses in a way that
- grows as the responses fall further out of the observed range. If the
ot Az penalty weight is equal for all probability mass falling outside the
pua) = f dn,p(n,) estimated range, the scale does not matter.
2 To find the channel capacity, we maximize transmitted information

(Eq. 6 under the constraints discussed in the preceding text. Any
The first and second constraints are implemented by requiring tR&indard minimization algorithm can be used. We used a sequential
0 = p(u) = 1 for all u, and that,p(u) = 1, respectively. The third quadratic programming method (Lawrence et al. 1997). We first found
constraint is implemented by penalizing distributions of means th@ie distribution that achieved channel capacity &r alone. We
lead to distributions ofp, that are inconsistent with observed valuesiniformly smeared this distribution over thg, dimension for each
of ¢, (recall thatd, and ¢, denote the coefficients with respect to thealue of ¢, to create a two-dimensional distribution, which was used
first and second principal components, respectively). The definitiong$ the starting point of the minimization. Because the search space is
the conditional distributionsHg. 2 forces the estimated distribution closed and convex, and transmitted information is a convex function

of responses to fall inside the estimatégdd, _envelope. _ of the probabilities, we are guaranteed a single global minimum
Specifically, if ¢ min and ¢ ya are the minimum and maximum (Cover and Thomas 1991). In two neurons, we nonetheless verified
permitted¢, values for a distribution, then we demand that that the minimization converged to the same solution from several

starting points. We also checked in two cells that increasing the
E C.(¢d1 = d1madP(Ppy) + E C_(d1min— ¢0)P(d1) =€ (A1) resolution of the discretization ap, and ¢, did not significantly
$1> b1 max $1<d1.min change our results.
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